years
Tags: partition functions
Description
The years()
function is a partition transformation function that extracts the year component from a timestamp or date column. It is commonly used for partitioning data by year.
Parameters
col
: Column - a timestamp or date column
Return Value
Column - the year component as an integer
Example
from pyspark.sql import SparkSession
from pyspark.sql.functions import years
# Create a Spark session
spark = SparkSession.builder.appName("years_example").getOrCreate()
# Create a DataFrame with sample timestamps
data = [("2023-01-15 10:30:00",), ("2022-12-31 23:59:59",), ("2024-03-20 15:45:30",)]
df = spark.createDataFrame(data, ["timestamp"])
df = df.withColumn("timestamp", df.timestamp.cast("timestamp"))
# Extract years
df = df.withColumn("year", years("timestamp"))
df.show()
# Output:
# +-------------------+----+
# | timestamp|year|
# +-------------------+----+
# |2023-01-15 10:30:00|2023|
# |2022-12-31 23:59:59|2022|
# |2024-03-20 15:45:30|2024|
# +-------------------+----+
Notes
- The function extracts the year component from a timestamp or date value
- Returns an integer representing the year
- Useful for partitioning data by year
- Can be used in combination with other partition functions like
months()
anddays()
- Returns NULL if the input is NULL